357 research outputs found

    Functional impairment in patients with myotonic dystrophy type 1 can be assessed by an ataxia rating scale (SARA)

    Get PDF
    Myotonic dystrophy type 1 (DM1) is not characterised by ataxia per se; however, DM1 and ataxia patients show similar disturbances in movement coordination often experiencing walking and balance difficulties, although caused by different underlying pathologies. This study aims to investigate the use of a scale previously described for the assessment and rating of ataxia (SARA) with the hypothesis that it could have utility in DM1 patients as a measure of disease severity and risk of falling. Data from 54 DM1 patients were pulled from the PHENO-DM1 natural history study for analysis. Mean SARA score in the DM1 population was 5.45 relative to the maximum score of eight. A flooring effect (score 0) was observed in mild cases within the sample. Inter-rater and test–retest reliability was high with intraclass coefficients (ICC) of 0.983 and 1.00, respectively. Internal consistency was acceptable as indicated by a Cronbach’s alpha of 0.761. Component analysis revealed two principle components. SARA correlated with: (1) all measures of muscle function tested, including quantitative muscle testing of ankle dorsiflexion (r = −0.584*), the 6 min walk test (r = −0.739*), 10 m walk test (r = 0.741*), and the nine hole peg test (r = 0.602*) and (2) measures of disease severity/burden, such as MIRS (r = 0.718*), MDHI (r = 0.483*), and DM1-Activ (r = −0.749*) (*p < 0.001). The SARA score was predicted by an interaction between modal CTG repeat length and age at sampling (r = 0.678, p = 0.003). A score of eight or above predicted the use of a walking aid with a sensitivity of 100% and a specificity of 85.7%. We suggest that further research is warranted to ascertain whether SARA or components of SARA are useful outcome measures for clinical trials in DM1. As a tool, it can be used for gathering information about disease severity/burden and helping to identify patients in need of a walking aid, and can potentially be applied in both research and healthcare settings

    A Randomized Greedy Algorithm for Near-Optimal Sensor Scheduling in Large-Scale Sensor Networks

    Full text link
    We study the problem of scheduling sensors in a resource-constrained linear dynamical system, where the objective is to select a small subset of sensors from a large network to perform the state estimation task. We formulate this problem as the maximization of a monotone set function under a matroid constraint. We propose a randomized greedy algorithm that is significantly faster than state-of-the-art methods. By introducing the notion of curvature which quantifies how close a function is to being submodular, we analyze the performance of the proposed algorithm and find a bound on the expected mean square error (MSE) of the estimator that uses the selected sensors in terms of the optimal MSE. Moreover, we derive a probabilistic bound on the curvature for the scenario where{\color{black}{ the measurements are i.i.d. random vectors with bounded 2\ell_2 norm.}} Simulation results demonstrate efficacy of the randomized greedy algorithm in a comparison with greedy and semidefinite programming relaxation methods

    Disease burden of myotonic dystrophy type 1

    Get PDF
    Objective: The objective of this cross-sectional, observational study was to investigate the disease burden of myotonic dystrophy type 1 (DM1), a disabling muscle disorder. Methods: Adults with DM1 were recruited as part of the PhenoDM1 study from Newcastle University (Newcastle upon Tyne, UK). Disease burden data were recorded through the Individualized Neuromuscular Quality of Life (INQoL) questionnaire. Results were examined by sex and clinical variables [e.g. the six-minute walk test (6MWT), the Mini Mental State Examination, and estimated progenitor and modal allele CTG repeat length]. Results: Our sample consisted of 60 patients with DM1 (mean age: 45 years; 45% female). Muscle weakness and fatigue constituted the two most common disease manifestations, reported by 93% and 90% of patients, respectively, followed by muscle locking (73%). Most patients (> 55%) reported feeling anxious/worried, depressed, frustrated, and/or having low confidence/self-esteem, 23% and 33% indicated substantial impairment of daily and leisure activities, respectively, and 47% did not work as a consequence of the disease. Estimated progenitor CTG length corrected by age correlated surprisingly well with INQoL scores. Differences by sex were generally minor. Conclusion: We show that DM1 is associated with a substantial disease burden resulting in impairment across many different domains of patients’ lives, emphasizing the need for a holistic approach to medical management. Our results also show that the INQoL records relevant information about patients with DM1, but that further investigation of the psychometric properties of the scale is needed for meaningful interpretation of instrument scores

    Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion

    Get PDF
    Funder: Lily FoundationFunder: Canadian Institutes of Health Research and Muscular Dystrophy CanadaAbstract: Background: Behr syndrome is a clinically distinct, but genetically heterogeneous disorder characterized by optic atrophy, progressive spastic paraparesis, and motor neuropathy often associated with ataxia. The molecular diagnosis is based on gene panel testing or whole-exome/genome sequencing. Methods: Here, we report the clinical presentation of two siblings with a novel genetic form of Behr syndrome. We performed whole-exome sequencing in the two patients and their mother. Results: Both patients had a childhood-onset, slowly progressive disease resembling Behr syndrome, starting with visual impairment, followed by progressive spasticity, weakness, and atrophy of the lower legs and ataxia. They also developed scoliosis, leading to respiratory problems. In their late 30’s, both siblings developed a hypertrophic cardiomyopathy and died of sudden cardiac death at age 43 and 40, respectively. Whole-exome sequencing identified the novel homozygous c.627_629del; p.(Gly210del) deletion in UCHL1. Conclusions: The presentation of our patients raises the possibility that hypertrophic cardiomyopathy may be an additional feature of the clinical syndrome associated with UCHL1 mutations, and highlights the importance of cardiac follow-up and treatment in neurodegenerative disease associated with UCHL1 mutations

    Change over time in ability to perform activities of daily living in myotonic dystrophy type 1

    Get PDF
    Objective: The objective of this longitudinal, observational study was to investigate change over time in ability to perform activities of daily living in myotonic dystrophy type 1 (DM1). Methods: Adults with genetically confirmed DM1 were recruited as part of the PhenoDM1 study in the UK. Data on activities of daily living were recorded through the DM1-ActivC at baseline and a follow-up visit after 12 (± 3) months. A subset of patients had advanced genetic testing to determine the size of the progenitor allele. Results: Our sample comprised 150 patients with DM1 (mean age: 45 years; 52% female). Mean follow-up was 383 days. Mean DM1-ActivC total score at baseline was 71.24 (95% confidence interval 67.77–74.71) and at the follow-up visit 69.04 (65.54–72.54). Approximately 43% of patients had a lower score at the follow-up visit (indicating a decreased ability to perform activities of daily living), 24% a higher score (indicating an increased ability), and 33% the same score at baseline and follow-up. The mean annual change in the DM1-ActivC total score, estimated at − 2.06 (− 3.54 to − 0.59), was significantly related to patients’ baseline score, but not sex, disease duration, timed test results, or cytosine-thymine-guanine repeat length. Conclusions: Change over time in ability to perform activities of daily living as recorded through the DM1-ActivC varies substantially between patients with DM1. Our data contribute to the understanding of the natural evolution of the disease, and should be helpful to inform the design of future trials based on the DM1-ActivC

    The UK myotonic dystrophy patient registry: facilitating and accelerating clinical research

    Get PDF
    Myotonic dystrophy type 1 (DM1) is the most frequent muscular dystrophy worldwide with complex, multi-systemic, and progressively worsening symptoms. There is currently no treatment for this inherited disorder and research can be challenging due to the rarity and variability of the disease. The UK Myotonic Dystrophy Patient Registry is a patient self-enrolling online database collecting clinical and genetic information. For this cross-sectional “snapshot” analysis, 556 patients with a confirmed diagnosis of DM1 registered between May 2012 and July 2016 were included. An almost even distribution was seen between genders and a broad range of ages was present from 8 months to 78 years, with the largest proportion between 30 and 59 years. The two most frequent symptoms were fatigue and myotonia, reported by 79 and 78% of patients, respectively. The severity of myotonia correlated with the severity of fatigue as well as mobility impairment, and dysphagia occurred mostly in patients also reporting myotonia. Men reported significantly more frequent severe myotonia, whereas severe fatigue was more frequently reported by women. Cardiac abnormalities were diagnosed in 48% of patients and more than one-third of them needed a cardiac implant. Fifteen percent of patients used a non-invasive ventilation and cataracts were removed in 26% of patients, 65% of which before the age of 50 years. The registry’s primary aim was to facilitate and accelerate clinical research. However, these data also allow us to formulate questions for hypothesis-driven research that may lead to improvements in care and treatment

    Phenotypic convergence of Menkes and Wilson disease.

    Get PDF
    Menkes disease is an X-linked multisystem disorder with epilepsy, kinky hair, and neurodegeneration caused by mutations in the copper transporter ATP7A. Other ATP7A mutations have been linked to juvenile occipital horn syndrome and adult-onset hereditary motor neuropathy.1,2 About 5%-10% of the patients present with "atypical Menkes disease" characterized by longer survival, cerebellar ataxia, and developmental delay.2 The intracellular copper transport is regulated by 2 P type ATPase copper transporters ATP7A and ATP7B. These proteins are expressed in the trans-Golgi network that guides copper to intracellular compartments, and in copper excess, it relocates copper to the plasma membrane to pump it out from the cells.3ATP7B mutations cause Wilson disease with dystonia, ataxia, tremor, and abnormal copper accumulation in the brain, liver, and other organs.4
    corecore